The class of co-Namioka compact spaces is stable under product

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

Measures on the Product of Compact Spaces

If K is an uncountable metrizable compact space, we prove a “factorization” result for a wide variety of vector valued Borel measures μ defined onK. This result essentially says that for every such measure μ there exists a measure μ′ defined on K such that the measure μ of a product A1 × · · · × An of Borel sets of K equals the measure μ′ of the intersection A1 ∩ · · · ∩An, where the Ai’s are c...

متن کامل

a class of compact operators on homogeneous spaces

let  $varpi$ be a representation of the homogeneous space $g/h$, where $g$ be a locally compact group and  $h$ be a compact subgroup of $g$. for  an admissible wavelet $zeta$ for $varpi$  and $psi in l^p(g/h), 1leq p

متن کامل

Properties of the Product of Compact Topological Spaces

One can prove the following proposition (1) For all topological spaces S, T holds Ω[: S, T :] = [:ΩS , ΩT :]. Let X be a set and let Y be an empty set. Note that [:X, Y :] is empty. Let X be an empty set and let Y be a set. Observe that [:X, Y :] is empty. We now state the proposition (2) Let X, Y be non empty topological spaces and x be a point of X. Then Y 7−→ x is a continuous map from Y int...

متن کامل

Kadec norms on spaces of continuous functions

We study the existence of pointwise Kadec renormings for Banach spaces of the form C(K). We show in particular that such a renorming exists when K is any product of compact linearly ordered spaces, extending the result for a single factor due to Haydon, Jayne, Namioka and Rogers. We show that if C(K1) has a pointwise Kadec renorming and K2 belongs to the class of spaces obtained by closing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1996

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-96-03330-8